Pemanfaatan Artificial Intelligence dalam Pengambilan Keputusan Klinis dan Manajemen Pasien Gawat Darurat di Bidang Anestesiologi: Sebuah Scoping Review
DOI:
https://doi.org/10.57214/jasira.v3i4.271Keywords:
Anestesi, Artificial Intelligence (AI), Health Personnel, Human-AI Interaction, TriageAbstract
Anesthesiology and emergency care require rapid and accurate clinical decision-making. Artificial intelligence (AI) offers substantial potential to support triage, monitoring, and decision-making in critical and emergency anesthesiology settings. This scoping review maps the use of AI in clinical decision-making and emergency patient management in anesthesiology and identifies existing research gaps. A literature search was conducted in ScienceDirect, PubMed, Cochrane Library, and Google Scholar for articles in Indonesian or English published between 2020 and 2025. Study selection followed Tricco’s scoping review framework, and methodological quality was assessed using Joanna Briggs Institute (JBI) tools. Ten articles met the inclusion criteria. AI was shown to improve triage accuracy and efficiency (predictive accuracy up to 99.1% and reductions in waiting time of around 30%). Machine learning models effectively predicted critical care needs and emergency risk, while AI-based clinical decision support systems (CDSS) enhanced the speed and quality of clinical decisions. Key challenges include data bias, ethical and privacy issues, clinician readiness, and integration with hospital information systems. AI and CDSS have strong potential to improve patient safety and clinical decision-making in emergency anesthesiology. Strengthening AI literacy, supportive regulation, and transparent, context-appropriate predictive models are needed for safe and sustainable implementation.
References
Abdalhalim, A. Z. A., Nureldaim Ahmed, S. N., Dawoud Ezzelarab, A. M., Mustafa, M., Ali Albasheer, M. G., Abdelgadir Ahmed, R. E., & Galal Eldin Elsayed, M. B. (2025). Clinical impact of artificial intelligence-based triage systems in emergency departments: A systematic review. Cureus. https://doi.org/10.7759/cureus.85667
Almulihi, Q. A., Alquraini, A. A., Almulihi, F. A. A., Alzahid, A. A., Al Qahtani, S. S. A. J., Almulhim, M., Alqhtani, S. H. S., Alnafea, F. M. N., Mushni, S. A. S., Alaqil, N. A., Assiri, M. I. F., & Maghraby, N. H. (2024). Applications of artificial intelligence and machine learning in emergency medicine triage: A systematic review. Medical Archives (Sarajevo, Bosnia and Herzegovina), 78(3), 198–206. https://doi.org/10.5455/medarh.2024.78.198-206
Amiot, F., & Potier, B. (2025). Artificial intelligence (AI) and emergency medicine: Balancing opportunities and challenges. JMIR Medical Informatics, 13. https://doi.org/10.2196/70903
Bogoń, A., Górska, M., Ostojska, M., Kałuża, I., Dziuba, G., & Dobosz, M. (2024). Artificial intelligence in anesthesiology – A review. Journal of Pre-Clinical and Clinical Research. https://doi.org/10.26444/jpccr/191550
Da’Costa, A., Teke, J., Origbo, J. E., Osonuga, A., Egbon, E., & Olawade, D. B. (2025). AI-driven triage in emergency departments: A review of benefits, challenges, and future directions. International Journal of Medical Informatics, 197, 105838. https://doi.org/10.1016/j.ijmedinf.2025.105838
Dewi, F. F. S. (2025). Peran clinical decision support system (CDSS) dalam meningkatkan efisiensi dan akurasi triase di IGD: Literature review 2015–2025. Jurnal Keperawatan Darurat, 8(1), 1–10.
Duran, H. T., Kingeter, M., Reale, C., Weinger, M. B., & Salwei, M. E. (2023). Decision-making in anesthesiology: Will artificial intelligence make intraoperative care safer? Current Opinion in Anaesthesiology, 36(6), 691–697. https://doi.org/10.1097/ACO.0000000000001318
Eastwood, K. W., May, R., Andreou, P., Abidi, S., Abidi, S. S. R., & Loubani, O. M. (2023). Needs and expectations for artificial intelligence in emergency medicine according to Canadian physicians. BMC Health Services Research, 23(1), 798. https://doi.org/10.1186/s12913-023-09740-w
Farah, F., & Dewi, S. (n.d.). Peran clinical decision support system (CDSS) dalam meningkatkan efisiensi dan akurasi triase di IGD. ResearchGate. https://www.researchgate.net/publication/392510051
Fei, L., Wang, H., Zhang, L., & Sun, Y. (2025). Artificial intelligence in anesthesia and perioperative medicine. AI and Precision Medicine, 4(1), 47–63. https://doi.org/10.1007/s44254-025-00107-4
Hilton, M. (2024). JBI critical appraisal checklist for systematic reviews and research syntheses (product review). Journal of the Canadian Health Libraries Association, 45(3). https://doi.org/10.29173/jchla29801
Hoppe, J. M., Auer, M. K., Strüven, A., Massberg, S., & Stremmel, C. (2024). ChatGPT with GPT-4 outperforms emergency department physicians in diagnostic accuracy: Retrospective analysis. Journal of Medical Internet Research, 26(1), e56110. https://doi.org/10.2196/56110
Kapoor, M. C., & Garg, S. (2024). Role of artificial intelligence in perioperative monitoring in anaesthesia. Indian Journal of Anaesthesia, 68(1), 87–92. https://doi.org/10.4103/ija.ija_1198_23
Kuttan, N., Pundkar, A., Gadkari, C., Patel, A., & Kumar, A. (2025). Transforming emergency medicine with artificial intelligence: From triage to clinical decision support. Multidisciplinary Reviews, 8(10). https://doi.org/10.31893/multirev.2025285
Loriga, A., Musu, M., Cravero, J., & Costa, M. (2025). Top three priorities for artificial intelligence integration into emergency, critical, and perioperative medicine: An interdisciplinary clinical expert consensus. Journal of Anesthesia, Analgesia and Critical Care, 5, 306. https://doi.org/10.1186/s44158-025-00306-2
Redfern, N., Bilotta, F., Abramovich, I., & Grigoras, I. (2023). Fatigue in anaesthesiology: Call for a change of culture and regulations. European Journal of Anaesthesiology, 40(2), 78–81. https://doi.org/10.1097/EJA.0000000000001767
Robertshaw, C., Ahmed, M., & Banerjee, S. (2024). Artificial intelligence in the autonomous navigation of endovascular interventions: A systematic review. Frontiers in Medical Technology, 6. https://arxiv.org/abs/2405.03305
Shimada, A., Tanaka, Y., & Suzuki, T. (2024). Artificial intelligence-assisted interventions for perioperative anesthetic management: A systematic review and meta-analysis. BMC Anesthesiology, 24, 2699. https://doi.org/10.1186/s12871-024-02699-z
Shu, X., Chen, Y., Zhang, J., & Li, Z. (2025). Applications of artificial intelligence in anesthesiology. AI and Precision Medicine, 4(2), 113–128. https://doi.org/10.1007/s44254-025-00131-4
Singhal, M., Gupta, L., & Hirani, K. (2023). A comprehensive analysis and review of artificial intelligence in anaesthesia. Cureus. https://doi.org/10.7759/cureus.45038
Suryani, F. (2023). Penerapan artificial intelligence dalam prediksi kegawatdaruratan penyakit katastropik. Jurnal Keperawatan Indonesia, 26(2), 145–154. https://doi.org/10.7454/jki.v26i2.1587
Yi, N., Baik, D., & Baek, G. (2025). The effects of applying artificial intelligence to triage in the emergency department: A systematic review of prospective studies. Journal of Nursing Scholarship, 57(1), 105–118. https://doi.org/10.1111/jnu.13024
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jurnal Siti Rufaidah

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



